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1 PART I

1 Part I

1.0.1 Setup

This section describes how to set the project up and what output to expect.
Load this whole file into the Glasgow Haskell Compiler Interactive interface (GHCi).
The following warnings are expected:

FPR.lhs:517:3: Warning: Defined but not used: ‘badList’

FPR.lhs:517:3:

Warning: Top-level binding with no type signature:

badList :: forall a. Sequ a -> [a]

FPR.lhs:540:3: Warning: Defined but not used: ‘nonTerminating’

this is due to badList being an example of bad style and nonterminating not terminating,
as the names suggest.

Warning level is set to all :
{-# OPTIONS -Wall #-}

1.0.2 Imported modules and copied functions

The following Prelude List functions are hidden as we are going to use them with Sequs.
module FPR (main) where
import Prelude hiding ((++), last , reverse, length,

map, concat , concatMap)

import Control .Applicative
import Control .Monad

The hiding of these functions means that to use them, for example in tests, they have
to be copied directly into this module. We will still need to append lists, so we will use
+++.

(+ + +) :: [a ]→ [a ]→ [a ]
[ ] + + + ys = ys
(x : xs) + + + ys = x : xs + + + ys

-- Data.List.last
listLast :: [a ]→ a
listLast [x ] = x
listLast ( : xs) = listLast xs
listLast [ ] = error "empty list in listLast"

-- Data.List.length
listLength :: [a ]→ Int
listLength [ ] = 0
listLength ( : xs) = 1 + listLength xs

-- Data.List.map
listMap :: (a → b)→ [a ]→ [b ]
listMap [ ] = [ ]
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listMap f (x : xs) = f x : listMap f xs

-- Data.List.concat
-- Concatenate a list of lists.

listConcat :: [ [a ] ]→ [a ]
listConcat = foldr (+ + +) [ ]

-- Data.List.concatMap
-- Map a function over a list and concatenate the results.

listConcatMap :: (a → [b ])→ [a ]→ [b ]
listConcatMap f = foldr ((+ + +) ◦ f ) [ ]

-- Data.List.nub
nub :: Eq a ⇒ [a ]→ [a ]
nub l = nub ′ l [ ]

where
nub ′ [ ] = [ ]
nub ′ (x : xs) ls
| x ∈ ls = nub ′ xs ls
| otherwise = x : nub ′ xs (x : ls)

1.0.3 Testing

Rather than pasting the results of functions into the body of the text equality assertions
are used. These are run when the file is compiled and executed (a much lighter version
of [HUnit]).

type Assertion = Bool
assertEqual :: (Eq a)⇒ a → a → Bool
assertEqual expected actual = expected ≡ actual
tests :: [Assertion ]
tests = [test1 , test2 , test3 , test4 , test5 , test6 , test7 , test8 ,

test9 , test10 , test11 , test12 , test13 , test14 , test15 ,
test16 , test17 , test18 , test19 , test20 , test21 , test22 ,
test23 , test24 , test25 , test26 , test27 , test28 , test29 ,
test30 , test31 , test32 , test33 , test34 , test35 , test36 ,
test37 , test38 , test39 , test40 , test41 , test42 ]

allWell :: Bool
allWell = and tests
main :: IO ()
main = if allWell then do output >> putStr ("OK\n")

else putStr ((show tests) + + + "\n")
To test all functions execute main:

*FPR> main

OK
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1.1 Leaf Trees

We want the list of the possible Leaf Trees whose leaves in left to right order are the list
of the first five primes. A Leaf Tree has values (labels) only at leaves, here called Sequ:

data Sequ a = Empty | Single a | Cat (Sequ a) (Sequ a)
deriving (Show ,Eq ,Ord)

1.1.1 The derivation of all Sequ

In the following the Cat constructor is represented with parentheses and the Single con-
structor is ommitted.

We can describe the Sequs in terms of the most simple and the process for adding
nodes to build up larger Sequ. We know that there is only one order-preserving Sequ for
the empty list, a singleton list and a two element list. For Sequ with more elements the
new element can be added by being appended to the whole Sequ or inside any of the
rightmost Sequ.

To generate all the possible Sequ with leaves in the same order as a List :
leafTrees :: [a ]→ [Sequ a ]
leafTrees a = leafTrees ′ a [Empty ]

leafTrees ′ :: [a ]→ [Sequ a ]→ [Sequ a ]
leafTrees ′ [ ] soFar = soFar
leafTrees ′ (x : xs) soFar =

leafTrees ′ xs (listConcatMap (addLeaf x ) soFar)

addLeaf :: a → Sequ a → [Sequ a ]
addLeaf x Empty = [Single x ]
addLeaf y (Single x ) = [Cat (Single x ) (Single y)]
addLeaf x (Cat (l) (r)) =

[Cat (Cat (l) (r)) (Single x )]
+ + +
(listMap (Cat (l)) (addLeaf x r))

firstFivePrimeLeafTrees :: [Sequ Integer ]
firstFivePrimeLeafTrees = leafTrees [2, 3, 5, 7, 11]

test1 :: Assertion
test1 = assertEqual

[Cat (Cat (Cat (Cat (Single 2) (Single 3)) (Single 5)) (Single 7)) (Single 11),
Cat (Cat (Cat (Single 2) (Single 3)) (Single 5)) (Cat (Single 7) (Single 11)),
Cat (Cat (Cat (Single 2) (Single 3)) (Cat (Single 5) (Single 7))) (Single 11),
Cat (Cat (Single 2) (Single 3)) (Cat (Cat (Single 5) (Single 7)) (Single 11)),
Cat (Cat (Single 2) (Single 3)) (Cat (Single 5) (Cat (Single 7) (Single 11))),
Cat (Cat (Cat (Single 2) (Cat (Single 3) (Single 5))) (Single 7)) (Single 11),
Cat (Cat (Single 2) (Cat (Single 3) (Single 5))) (Cat (Single 7) (Single 11)),
Cat (Cat (Single 2) (Cat (Cat (Single 3) (Single 5)) (Single 7))) (Single 11),
Cat (Single 2) (Cat (Cat (Cat (Single 3) (Single 5)) (Single 7)) (Single 11)),
Cat (Single 2) (Cat (Cat (Single 3) (Single 5)) (Cat (Single 7) (Single 11))),
Cat (Cat (Single 2) (Cat (Single 3) (Cat (Single 5) (Single 7)))) (Single 11),
Cat (Single 2) (Cat (Cat (Single 3) (Cat (Single 5) (Single 7))) (Single 11)),
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Cat (Single 2) (Cat (Single 3) (Cat (Cat (Single 5) (Single 7)) (Single 11))),
Cat (Single 2) (Cat (Single 3) (Cat (Single 5) (Cat (Single 7) (Single 11))))

]
firstFivePrimeLeafTrees

1.1.2 Catalan Number tests

We know that the number of possible binary trees from with n + 1 leaves is the Catalan
Number index n [Binary Trees]

test2 :: Assertion
test2 = assertEqual 14 (listLength firstFivePrimeLeafTrees)

-- from Math-Combinat-Numbers
binomial :: Integral a ⇒ a → a → Integer
binomial n k
| k > n = 0
| k < 0 = 0
| k > (n ‘div ‘ 2) = binomial n (n − k)
| otherwise = (product [n ′ − k ′ + 1 . . n ′ ]) ‘div ‘ (product [1 . . k ′ ])
where

k ′ = fromIntegral k
n ′ = fromIntegral n

-- from Math-Combinat-Trees-Binary
catalan :: Int → Integer
catalan n = binomial (2 ∗ n) n ‘div ‘ (1 + fromIntegral n)

-- Test equality of members of a pair
assertEqualIntegralTuple :: (Integral a, Integral b)⇒ (a, b)→ Bool
assertEqualIntegralTuple (x , y) =

assertEqual x (fromIntegral y)

-- Count possible Sequ
sequCounts :: Int → [(Integer , Int)]
sequCounts n = [(catalan (x − 1),

(listLength (leafTrees [1 . . x ]))) | x ← [1 . . n ] ]
The following starts to take a long time quite quickly!

test3 :: Assertion
test3 = and $ listMap assertEqualIntegralTuple

$ sequCounts 11

1.1.3 Uniqueness test

A buggy implementation might generate duplicates, so we guard against that with a test.
test4 :: Assertion
test4 = assertEqual firstFivePrimeLeafTrees

(nub firstFivePrimeLeafTrees)
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1.2 Leaf Tree Concatenation

Two leaf trees are appended when the lists of their leaves are concatenated.
(++) :: Sequ a → Sequ a → Sequ a
(++) Empty y = y
(++) x Empty = x
(++) x y = Cat (x ) (y)

The type signature tells us that the function takes two arguments of type Sequ a that is
a Sequ of any type (Sequ is a parametric data type). The function yields a Sequ value.

test5 :: Assertion
test5 = assertEqual

(Cat (Cat (Single ’1’) (Single ’2’)) (Cat (Single ’3’) (Single ’4’)))
(Cat (Single ’1’) (Single ’2’) ++ Cat (Single ’3’) (Single ’4’))

test6 :: Assertion
test6 = assertEqual ([’1’, ’2’ ] + + + [’3’, ’4’ ])

(list ((Cat (Single ’1’) (Single ’2’) ++ Cat (Single ’3’) (Single ’4’))))

1.2.1 Curried Sequ

The signature also tells us that the function could be curried into a single argument
function by supplying only one Sequ argument, though the resultant function is no longer
polymorphic, its type being determined by the type of the supplied argument.

s1 :: Sequ Char
s1 = (Single ’x’)
s2 :: Sequ Char
s2 = (Single ’y’)

append ′ :: Sequ Char → Sequ Char
append ′ = ((++) s1 )

test7 :: Assertion
test7 = assertEqual ((++) s1 s2 )

(append ′ s2 )
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1.3 Sequ Design Pattern

The Sequ Design Pattern can be stated by analogy to the List Design Pattern.

1.3.1 List Design Pattern

List Design Patttern (List Consumer) [FPR 2011]

Task : Define a function of type f :: [P] → S

Step 1 : Solve the problem for the empty list
f [] = ...

Step 2: Assume that you already have the solution for ”xs” ; extend the
intermediate solution for x:xs

f(x:xs) = ... x ... xs ... f xs ...

1.3.2 Sequ Design Pattern

In the same fashion we can define a design pattern for functions which consume an element
of type Sequ T.

Sequ Design Patttern (Sequ Consumer)

Task : Define a function of type consume :: Sequ → S

Step 1 : Solve the problem for the empty Sequ (Empty)
consume Empty = ...

Step 2 : Solve the problem for the leaf Sequ (Single)
consume Single x = ...

Step 3: Assume that you already have the solution for Sequ
(consume s); extend the intermediate solution for
Cat (Sequ l) (Sequ r)
by supplying the two argument function to conjoin the left and right branches
(conj )

consume(Cat (l) (r)) = conj (consume l) (consume r )

1.3.3 A pretty printer for Sequ

For example a pretty printer for Sequ
pprint :: (Show a)⇒ Sequ a → String
pprint Empty = "E"
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pprint (Single x ) = show x
pprint (Cat (l) (r)) = "(" + + + pprint l + + + ","

+ + + pprint r + + + ")"

test8 :: Assertion
test8 = assertEqual

[
"((((2,3),5),7),11)",
"(((2,3),5),(7,11))",
"(((2,3),(5,7)),11)",
"((2,3),((5,7),11))",
"((2,3),(5,(7,11)))",
"(((2,(3,5)),7),11)",
"((2,(3,5)),(7,11))",
"((2,((3,5),7)),11)",
"(2,(((3,5),7),11))",
"(2,((3,5),(7,11)))",
"((2,(3,(5,7))),11)",
"(2,((3,(5,7)),11))",
"(2,(3,((5,7),11)))",
"(2,(3,(5,(7,11))))" ]

(listMap pprint firstFivePrimeLeafTrees)

[Bird 1998] page 180 gives us that there are five ways of bracketing four values.

test9 :: Assertion
test9 = assertEqual 5 (listLength (listMap pprint (leafTrees [1, 2, 3, 4 :: Int ])))

1.3.4 Design considerations for Sequ Producers

The considerations for a Sequ Producer are:
What patterns, if any, result in Empty?
What patterns result in a Single?
What patterns, if any, result in Cat?
Should a Cat be extended to the right or left?
When a Cat results does the Sequ need to be rebalanced?

1.3.5 Reverse Sequ

reverse :: Sequ a → Sequ a
reverse Empty = Empty
reverse (Single a) = (Single a)
reverse (Cat l r) = (Cat (reverse r) (reverse l))

test10 :: Assertion
test10 = assertEqual

(Cat (Single ’b’) (Single ’a’))
(reverse (Cat (Single ’a’) (Single ’b’)))
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1.3.6 Last Sequ

last :: Sequ a → a
last Empty = ⊥
last (Single a) = a
last (Cat r) = last r

test11 :: Assertion
test11 = assertEqual ’g’ (last (sequ "Dog"))

1.3.7 Maybe Last Sequ

(last (Cat (Single ’0’) Empty))

results in
*** Exception: Prelude.undefined

As the return of a Sequ with a final Empty is undefined this would be better as a
Maybe type:

maybeLast :: Sequ a → Maybe a
maybeLast Empty = Nothing
maybeLast (Single x ) = Just x
maybeLast (Cat r) = maybeLast (r)

test12 :: Assertion
test12 = assertEqual

Nothing
(maybeLast (Cat (Single ’0’) Empty))

1.3.8 Length Sequ

length :: Sequ a → Integer
length Empty = 0
length (Single ) = 1
length (Cat l r) = (length l) + (length r)

test13 :: Assertion
test13 = assertEqual 2 (length (Cat (Cat (Single ’a’) (Single ’b’)) Empty))

A more general type for length would be

length :: (Integral n) => Sequ a -> n

1.4 Higher order functions

1.4.1 Map Sequ

map :: (a → b)→ (Sequ a → Sequ b)
map Empty = Empty
map f (Single a) = (Single (f a))
map f (Cat l r) = (Cat (map f l) (map f r))
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test14 :: Assertion
test14 = assertEqual (Cat (Single (2 :: Int)) (Single (3 :: Int)))

(map ((+) 1) (Cat (Single (1 :: Int)) (Single (2 :: Int))))

1.4.2 Concat Sequ

concat :: Sequ (Sequ a)→ Sequ a
concat Empty = Empty
concat (Single a) = a
concat (Cat l r) = (concat l) ++ (concat r)

test15 :: Assertion
test15 = assertEqual

(Cat (Cat (Single ’1’) (Single ’2’)) (Cat (Single ’3’) (Single ’4’)))
(concat

(Cat (Single (Cat (Single ’1’) (Single ’2’)))
(Single (Cat (Single ’3’) (Single ’4’))))

)

1.4.3 ConcatMap Sequ

concatMap :: (a → Sequ b)→ (Sequ a → Sequ b)
concatMap Empty = Empty
concatMap f (Single a) = f a
concatMap f (Cat l r) = (concatMap f l) ++ (concatMap f r)

test16 :: Assertion
test16 = assertEqual

(Cat (Cat (Single ’a’) (Single ’b’)) (Cat (Single ’c’) (Single ’d’)))
(concatMap (sequ) (Cat (Single "ab") (Single "cd")))

1.4.4 Sequ as Functor

Sequ can be made an instance of Functor [Classes].
instance Functor Sequ where

fmap Empty = Empty
fmap f (Single x ) = Single (f x )
fmap f (Cat l r) = Cat (fmap f l) (fmap f r)

test17 :: Assertion
test17 = assertEqual (Cat (Single "f-a") (Single "f-b"))

(fmap ((+ + +) "f-") (Cat (Single "a") (Single "b")))

1.4.5 Sequ as Applicative

instance Applicative Sequ where
pure = return
(< ∗ >) = ap

test18 :: Assertion
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test18 = assertEqual (Cat (Single "f-a") (Single "f-b"))
(pure ((+ + +) "f-")< ∗ > (Cat (Single "a") (Single "b")))

1.4.6 Sequ as Monad

instance Monad Sequ where
return = Single

Empty >>= = Empty
Single x >>= f = f x
Cat l r >>= f = Cat (l >>= f ) (r >>= f )

fail = Empty

test19 :: Assertion
test19 = assertEqual (Cat (Single "f-a") (Single "f-b"))

((Cat (Single "a") (Single "b"))>>= λx → return ("f-" + + + x ))

1.5 Using the Sequ Design Pattern

1.5.1 Sequ Design Pattern as a higher order function

[Applogies for re-implementing all six functions, this was done for practice, use later on
and symmetry. If this was inappropriate please consider lengthC and concatMapC as my
submission for this section.]

The List Consumer Design Pattern can be written as

consumeList :: (a → b)→ (b → c → c)→ c → [a ]→ c
consumeList deflt [ ] = deflt
consumeList f conj deflt (x : xs) = conj (f x ) (consumeList f conj deflt xs)

test20 :: Assertion
test20 = assertEqual (9 :: Int)

(consumeList (+1) (+) (0) [1, 2, 3 :: Int ])

test21 :: Assertion
test21 = assertEqual "123" (consumeList show (+ + +) "" [1, 2, 3 :: Int ])

test22 :: Assertion
test22 = assertEqual 3

(consumeList (\ → 1) (+) (0 :: Int) [’a’, ’b’, ’c’ ])

The Sequ Consumer Design Pattern can similarly be written as follows (note that the
default, intermediate and resultant types are the same)

consume :: (a → b)→ (b → b → b)→ b → Sequ a → b
consume deflt Empty = deflt
consume f (Single x ) = (f x )
consume f conj deflt (Cat l r) = conj (consume f conj deflt l)

(consume f conj deflt r)

test23 :: Assertion
test23 = assertEqual (9 :: Int)

(consume (+1) (+) (0) (Cat (Cat (Single 1) (Single 2)) (Single 3)))
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test24 :: Assertion
test24 = assertEqual "123"

(consume show (+ + +) "" (Cat (Cat (Single (1 :: Int)) (Single 2)) (Single 3)))
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1.5.2 Functions using consume

Reverse Sequ
reverseC :: Sequ a → Sequ a
reverseC = consume rewrap swap Empty where

rewrap :: a → Sequ a
rewrap x = (Single x )
swap :: Sequ a → Sequ a → Sequ a
swap l r = Cat r l

test25 :: Assertion
test25 = assertEqual

(reverse (Cat (Single ’a’) (Single ’b’)))
(reverseC (Cat (Single ’a’) (Single ’b’)))

Last Sequ
lastC :: Sequ a → a
lastC = consume id conj ⊥ where

conj :: a → a → a
conj r = r

test26 :: Assertion
test26 = assertEqual

(last (sequ "Dog"))
(lastC (sequ "Dog"))

maybeLastC :: Sequ a → Maybe a
maybeLastC = consume f conj Nothing where

f :: a → Maybe a
f x = Just x
conj :: Maybe a → Maybe a → Maybe a
conj r = r

test27 :: Assertion
test27 = assertEqual

(maybeLast (Cat (Single ’0’) Empty))
(maybeLastC (Cat (Single ’0’) Empty))

Length Sequ
lengthC :: Sequ a → Integer
lengthC = consume (\ → 1) (+) 0

test28 :: Assertion
test28 = assertEqual

(length (Cat (Cat (Single ’a’) (Single ’b’)) Empty))
(lengthC (Cat (Cat (Single ’a’) (Single ’b’)) Empty))
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1.5.3 Higher Order Functions using consume

Map Sequ
mapC :: (a → b)→ (Sequ a → Sequ b)
mapC f = consume (fwrap f ) Cat Empty where

fwrap :: (a → b)→ a → Sequ b
fwrap fn x = (Single $ fn x )

test29 :: Assertion
test29 = assertEqual

(map ((+) 1) (Cat (Single (1 :: Int)) (Single (2 :: Int))))
(mapC ((+) 1) (Cat (Single (1 :: Int)) (Single (2 :: Int))))

Concat Sequ
concatC :: Sequ (Sequ a)→ Sequ a
concatC = consume id (++) Empty

test30 :: Assertion
test30 = assertEqual

(concat
(Cat (Single (Cat (Single ’1’) (Single ’2’)))
(Single (Cat (Single ’3’) (Single ’4’))))

)
(concatC

(Cat (Single (Cat (Single ’1’) (Single ’2’)))
(Single (Cat (Single ’3’) (Single ’4’))))

)
ConcatMap Sequ

concatMapC :: (a → Sequ b)→ (Sequ a → Sequ b)
concatMapC f = consume f (++) Empty

test31 :: Assertion
test31 = assertEqual

(concatMap (sequ) (Cat (Single "ab") (Single "cd")))
(concatMapC (sequ) (Cat (Single "ab") (Single "cd")))
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1.6 Sequ to List

list :: Sequ a → [a ]
list Empty = [ ]
list (Single x ) = [x ]
list (Cat (l) (r)) = (list l) + + + (list r)

test32 :: Assertion
test32 = assertEqual

["2", "3", "5", "7", "11" ]
(list

(Cat (Cat (Cat (Single "2") (Single "3")) (Single "5")) (Cat (Single "7") (Single "11")))
)

test33 :: Assertion
test33 = assertEqual

[
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11],
[2, 3, 5, 7, 11]

]
(listMap list firstFivePrimeLeafTrees)

list is an information losing function, all tree structures in firstFivePrimeLeafTrees
result in the same List. Conversly sequ requires information, a strategy, to build Sequs
from a List.

Of the trees in firstFivePrimeLeafTrees we can name two patterns: Right Branching
and Left Branching. A third possible pattern, Balanced, is only available for lists with
an even number of elements, but we could define a function leastDepth. The particu-
lar strategy we choose depends upon what use we are to make of the Sequ we create,
for searching a leastDepth strategy is most efficient, for conversion back to a List an
unbalanced strategy is more efficient.

rsequ :: [a ]→ Sequ a
rsequ [ ] = Empty
rsequ [x ] = Single x
rsequ xs = Cat (rsequ (allButLast xs)) (Single (listLast xs))

allButLast :: [a ]→ [a ]
allButLast [ ] = [ ]
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allButLast [ ] = [ ]
allButLast (x : xs) = x : allButLast xs
test35 :: Assertion
test35 = assertEqual (Cat (Cat (Single ’a’) (Single ’b’)) (Single ’c’))

(rsequ "abc")
lsequ :: [a ]→ Sequ a
lsequ [ ] = Empty
lsequ [x ] = Single x
lsequ (x : xs) = Cat (Single x ) (lsequ xs)
test34 :: Assertion
test34 = assertEqual (Cat (Single ’a’) (Cat (Single ’b’) (Single ’c’)))

(lsequ "abc")
sequ :: [a ]→ Sequ a
sequ = lsequ

Both list and sequ run in linear time.

1.7 Expression normalisation

normalise :: Sequ a → Sequ a
normalise Empty = Empty
normalise (Single x ) = Single x
normalise (Cat s Empty) = normalise s
normalise (Cat Empty s) = normalise s
normalise (Cat a b) = Cat (normalise a) (normalise b)
test36 :: Assertion
test36 = assertEqual

(Cat (Cat (Cat (Cat (Single ’2’) (Single ’3’)) (Single ’5’))
(Single ’7’)) (Single ’9’))

(normalise
(Cat (Cat (Cat (Cat (Single ’2’) (Single ’3’)) (Single ’5’))

(Single ’7’)) (Single ’9’)))

test37 :: Assertion
test37 = assertEqual

(Cat (Cat (Single ’1’) (Single ’2’)) (Single ’3’))
(normalise (Cat (Cat (Cat (Single ’1’) Empty)

(Cat (Single ’2’) Empty)) (Cat Empty (Single ’3’))))
Assuming that a is an instance of Eq

normalised :: (Eq a)⇒ Sequ a → Bool
normalised s = s ≡ normalise s
test38 :: Assertion
test38 = assertEqual True

(normalised (Single ’c’))
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1.8 Code critique

badList (Empty) = [ ]
badList (Single x ) = [x ]
badList (Cat (Empty) zs) = badList zs
badList (Cat (Single x ) zs) = x : badList zs
badList (Cat (Cat xs ys) zs) = badList (Cat (Cat xs ys) zs)

badList does not have a type declaration, which is considered good style. badList is total
as the first argument to the constructor. Cat in equations 3, 4 and 5 enumerates all
possible Sequ patterns and equations 1 and 2 match the two possible terminal Sequs.

badList is non-terminating as the left and right sides of equation 5 are the same. For
a function to be terminating a recursive call must have a reducing term.

For Sequ on which badList terminates it is as efficient as possible, that is it runs in
linear time for patterns which do not match equation 5.

The longest Sequ for which badList terminates contains three leaves and is of the form:

(Cat (Single 2) (Cat (Single 3) (Single 5)))

nonTerminating :: Assertion
nonTerminating = assertEqual

[2, 3, 5 :: Int ]
(badList

(Cat (Cat (Single 2) (Single 3)) (Single 5))
)
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2 Part II

XHTML is the name given to a number of XML definitions from the W3C. We will use
XHTML 1.0 Strict [XHTML]. We aim to be able to represent XHTML documents and
render them as trees of Sequ which we check by converting to text and validating against
the W3C validator [W3C Validator].

Haskell has a Text.Xhtml module which is descended from Text.Html which is in turn
derived from [Wallace, Runciman 1999].

2.1 Representing XHTML

XHTML documents are a tree of nested elements. A dubious design decision is to repre-
sent text as an element, it would perhaps be better to introduce a super type XHTML-
Fragment which could be XHTMLText or XHTMLText, as we could then eliminate two
error calls.

-- Attributes are (name:value) pairs.
data Attribute = Attr String String deriving (Eq)

infixl 4 ===
(===) :: String → String → Attribute
(===) = Attr

-- An element is text or tagged
data XHTMLElement = XHTMLText String |

XHTMLElement {tag :: String ,
attributes :: [Attribute ],
content :: Sequ XHTMLElement
} deriving (Eq)

-- A page is a sequence of elements
data XHTMLPage = XHTMLPage (Sequ XHTMLElement)

-- Append XHTMLElement to the current Sequ of content elements
nest :: XHTMLElement → XHTMLElement → XHTMLElement

-- FIXME This points to the need to introduce a super type
nest (XHTMLText ) = error "XHTMLText may not be nested"

nest XHTMLElement {tag = t , attributes = a, content = c} x =
XHTMLElement {tag = t , attributes = a, content = n } where n = c ++ (Single x )

infixl 2<<<
(<<<) :: XHTMLElement → XHTMLElement → XHTMLElement
(<<<) = nest

-- Add attribute (prepend to attribute list)
addAttribute :: XHTMLElement → Attribute → XHTMLElement
addAttribute XHTMLElement {tag = t , attributes = as , content = c} a =

XHTMLElement {tag = t , attributes = a : as , content = c}
-- FIXME This points to the need to introduce a super type

addAttribute (XHTMLText ) = error "XHTMLText may not have attributes added"

infixl 3 @@@ -- bind more closely than nesting
(@@@) :: XHTMLElement → Attribute → XHTMLElement
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(@@@) = addAttribute

2.2 Outputting XHTML from the representation

An XML document is composed of an XML declaration, which determines the character
set to be used, an XML DOCTYPE tag which defines the Document Type Definition
(DTD) and XML elements.

-- Show name unquoted, value quoted, with spaces before and after
instance Show Attribute where

show (Attr k v) = " " + + + k + + + "=" + + + show v + + + " "

showList [ ] = showString ""

showList attrs = showString (listConcatMap show attrs)

An XML element typically consists of a start tag, content and an end tag. A start tag
consists of a label and attributes. Element content may be empty or contain a sequence
of text or elements. An end tag consists of the tag label eg </tag>. There is a special
syntax for an empty element, where an end tag is not required eg <tag/>.

-- Show an element as text or a possibly empty element
instance Show XHTMLElement where

show (XHTMLText s) = s
show (XHTMLElement {tag = t , attributes = attrs , content = Empty }) =
"<" + + + t + + + show attrs + + + "/>"

show (XHTMLElement {tag = t , attributes = attrs , content = c}) =
"<" + + + t + + + show attrs + + + ">" + + + (consume show (+ + +) "" c) + + +
"</" + + + t + + + ">\n"

-- Prepend XML and DTD declarations then show tree
instance Show XHTMLPage where

show (XHTMLPage xs) = xmlDefinition
+ + + "\n"

+ + + documentTypeDefinition
+ + + "\n"

+ + + (consume show (+ + +) "\n" xs)
+ + + "\n"

-- required at top of document
xmlDefinition :: String
xmlDefinition = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"

-- required immediately after XML definition
documentTypeDefinition :: String
documentTypeDefinition = "<!DOCTYPE html PUBLIC "

+ + + [’"’ ] + + + "-//W3C//DTD XHTML 1.0 Strict//EN"

+ + + [’"’, ’ ’, ’"’ ]
+ + + "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

+ + + [’"’, ’ ’, ’>’ ]

-- Add enclosing html element
xhtmlPage :: XHTMLPage → XHTMLPage
xhtmlPage (XHTMLPage els) = XHTMLPage (Single XHTMLElement {tag = "html",
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attributes = ["xmlns" === "http://www.w3.org/1999/xhtml" ],
content = els })
-- Create an html page from a head and body

showXHTMLPage :: XHTMLPage → Sequ Char
showXHTMLPage xPage = sequ (show $ xhtmlPage xPage)

Text may be characters from our specified character set (UTF-8) or entites represent-
ing characters; where entities are a string of lowercase letters prefaced with an & and
terminated with a ; eg &amp;.

-- if the text contains markup characters escape them to entities
xhtmlEscape :: String → XHTMLElement
xhtmlEscape s = XHTMLText (listConcatMap tr s)

tr :: Char → String
tr ’<’ = "&lt;";
tr ’>’ = "&gt;"

tr ’&’ = "&amp;"

tr c = [c ]

-- Used when the text contains entities ie is already escaped
escaped :: String → XHTMLElement
escaped s = XHTMLText s

test39 :: Assertion
test39 = assertEqual (escaped "&lt;p&gt;B&amp;O&lt;/p&gt;")

(xhtmlEscape "<p>B&O</p>")

test40 :: Assertion
test40 = assertEqual

(Cat (Single ’D’) (Cat (Single ’o’) (Single ’g’)))
(sequ "Dog")

charSequToString :: Sequ Char → String
charSequToString Empty = [ ]
charSequToString (Single c) = [c ]
charSequToString (Cat l r) = (charSequToString l) + + +

(charSequToString r)
test41 :: Assertion
test41 = assertEqual
"abc"

(charSequToString (Cat (Cat (Single ’a’) (Single ’b’)) (Single ’c’)))

2.2.1 Element creation functions

-- Create a simple text element
element :: String → String → XHTMLElement
element tName s = XHTMLElement
{tag = tName,

attributes = [ ],
content = (Single $ xhtmlEscape s)}

-- Create a title
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title :: String → XHTMLElement
title s = element "title" s

-- Create an h1
h1 :: String → XHTMLElement
h1 s = element "h1" s

-- Create a p
p :: String → XHTMLElement
p s = element "p" s

-- Create an img
img :: String → String → String → String →

XHTMLElement
img src alt height width = XHTMLElement {

tag = "img",
attributes = ["src" === src,
"alt" === alt ,
"title" === alt , -- repeated
"height" === height ,
"width" === width
],

content = Empty }
-- Create an anchor with required attribute href

anchor :: String → XHTMLElement → XHTMLElement
anchor url e = XHTMLElement {

tag = "a",
attributes = ["href" === url ],
content = (Single e)}

2.2.2 Creating a specific XHMTL instance

testText :: String
testText = "Hello World <& your dog>"

xhtmlTestText :: XHTMLElement
xhtmlTestText = xhtmlEscape testText
lorem :: XHTMLElement
lorem = p (listConcat ["Lorem ipsum dolor sit amet, consectetur adipiscing ",
"elit. Sed viverra tellus lacus. Curabitur tempus auctor",
"est, pellentesque posuere turpis rhoncus eget. ",
"Pellentesque lacus mi, consectetur et posuere eget, ",
"porta a sem. Aenean vel dictum enim. Pellentesque et ",
"velit ipsum, eu tempor felis. Suspendisse felis tellus, ",
"posuere sit amet ultricies sit amet, luctus id neque. ",
"Donec nulla turpis, tempor a tincidunt nec, eleifend ",
"et turpis. In eget turpis eu nisl consequat gravida sit ",
"amet sit amet urna." ])

helloImg :: XHTMLElement
helloImg = (img "hello.jpg" (show xhtmlTestText) "78" "298")
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@@@ "onmouseover" === "style.border=’2px solid red’;"

@@@ "onmouseout" === "style.border=’2px solid green’"

@@@ "style" === "border:2px solid green;"

imgP :: XHTMLElement
imgP = XHTMLElement {

tag = "p",
attributes = [ ],
content = (Single (anchor "http://google.com" helloImg))}

br :: XHTMLElement
br = XHTMLElement {

tag = "br",
attributes = [ ],
content = Empty }

hr :: XHTMLElement
hr = XHTMLElement {

tag = "hr",
attributes = ["style" === "border:2px solid blue;" ],
content = Empty }

validP :: XHTMLElement
validP = XHTMLElement {

tag = "p",
attributes = [ ],
content = (Cat (Single br)

(Single (anchor "http://validator.w3.org/check?uri=referer"

(img "http://www.w3.org/Icons/valid-xhtml10"

"Valid XHTML 1.0 Strict" "31" "88"))))}
divBlock :: XHTMLElement
divBlock = XHTMLElement {

tag = "div",
attributes = ["style" === "text-align:left; width:640px;" ],
content = Empty }<<< h1 testText <<< imgP <<< lorem <<< hr

bodyBlock :: XHTMLElement
bodyBlock = XHTMLElement {

tag = "body",
attributes = ["onload" === ("alert(’" + + + (show xhtmlTestText) + + + "’);"),
"style" === "text-align:center;width:100%" ],

content = (Single divBlock)}<<< validP

headBlock :: XHTMLElement
headBlock = XHTMLElement {

tag = "head",
attributes = [ ],
content = (Single $ title testText)}

testPage :: XHTMLPage
testPage = XHTMLPage (Cat (Single headBlock) (Single bodyBlock))

test42 :: Assertion
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test42 = assertEqual
(listConcat ["<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n",
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\" ",
"\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\" >\n",
"<html xmlns=\"http://www.w3.org/1999/xhtml\" >",
"<head><title>Hello World &lt;&amp; your dog&gt;</title>\n",
"</head>\n",
"<body onload=\"alert(’Hello World &lt;&amp; your dog&gt;’);\"",
" style=\"text-align:center;width:100%\" >",
"<div style=\"text-align:left; width:640px;\" >",
"<h1>Hello World &lt;&amp; your dog&gt;</h1>\n",
"<p><a href=\"http://google.com\" >",
"<img ",
"style=\"border:2px solid green;\" ",
"onmouseout=\"style.border=’2px solid green’\" ",
"onmouseover=\"style.border=’2px solid red’;\" ",
"src=\"hello.jpg\" ",
"alt=\"Hello World &lt;&amp; your dog&gt;\" ",
"title=\"Hello World &lt;&amp; your dog&gt;\" ",
"height=\"78\" width=\"298\" ",
"/></a>\n",
"</p>\n",
"<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. ",
"Sed viverra tellus lacus. Curabitur tempus auctorest, ",
"pellentesque posuere turpis rhoncus eget. ",
"Pellentesque lacus mi, consectetur et posuere eget, ",
"porta a sem. Aenean vel dictum enim. Pellentesque et velit ",
"ipsum, eu tempor felis. Suspendisse felis tellus, posuere ",
"sit amet ultricies sit amet, luctus id neque. ",
"Donec nulla turpis, tempor a tincidunt nec, eleifend et ",
"turpis. In eget turpis eu nisl consequat gravida sit amet ",
"sit amet urna.</p>\n",
"<hr style=\"border:2px solid blue;\" /></div>\n",
"<p><br/>",
"<a href=\"http://validator.w3.org/check?uri=referer\" >",
"<img src=\"http://www.w3.org/Icons/valid-xhtml10\" ",
"alt=\"Valid XHTML 1.0 Strict\" ",
"title=\"Valid XHTML 1.0 Strict\" ",
"height=\"31\" width=\"88\" /></a>\n",
"</p>\n",
"</body>\n",
"</html>\n\n"

])
(charSequToString (showXHTMLPage testPage))
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2.2.3 Outputting an XHMTL file

If all tests pass then the page is written to the file system.
output :: IO ()
output = do

writeFile "fpr.xhtml" (charSequToString (showXHTMLPage testPage))
The resulting xhtml file can be seen at [output] and is shown valid at [W3C Validator].

2.3 Conclusion

The model and its dependant output functions can represent valid XHTML documents.
It can also represent invalid documents (by for example placing an XHTMLText element
directly inside a body element). The representaton does nothing to check that Javascript
or CSS is valid.

One could extend this project to parse a DTD to generate element creation functions
with the appropriate required attributes; the augmentation function (addAttribute) can
be used to handle optional attributes. This would also enable validation of attribute
names and simple type checking on attribute values.

One could also envisage extending the project to parse XHTML into the representation
so enabling round-tripping.
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3 Part III

3.1 Functional Programming and JavaTM

The history of programing languages is convoluted, with functional, imperative and ob-
ject based languages being intertwined, at least in time, and with the ’best bits’, once
they have been originated, being used by all subsequent languages (by definition). Both
functional languages and non-functional languages owe an enormous debt to John Mc-
Carthy who both invented Lisp and served on the Algol committee from which most
subsequent imperative languages derived[Graham 2001].

A language is not a single thing, so Java 1.1 is quite different to Java 8, however
the requirement for backward compatibility has led Java to evolve into a very complex
language.

There is a set of features, such as Garbage Collection [Stutter 2011], which were
first introduced in functional languages and are used in main-stream languages such as
JavaTM, but will not be considered to be Functional Programming Features but merely
common building blocks first demonstrated within a functional framework. Similarly we
will not count Conditionals or variables as pointers which were all first demonstrated in
Lisp [Graham 2001].

3.1.1 Function Types

The defining feature of a functional programming language is function types, or having
functions as first class objects. JavaTM does not have Function Types, relying upon
anonymous classes and introspection.

3.1.2 Lambdas

Java version 1 - 7 do not have a built in syntax for lambdas. Anonymous Inner Classes
are closures which JavaTM has always had. [java.lang.Thread] and more recently
[java.util.concurrent.Executor] can take a closure as an argument and execute it

pub l i c c l a s s He l l o {
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {

new Thread (
new Runnable ( ) {

pub l i c void run ( ) {
System . out . p r i n t l n (” He l lo World ” ) ;

}
} ) . s t a r t ( ) ;

}
}

Runnable is a Interface with a Single Abstract Method (SAM), and it is expected that
lambdas will be released in Java8 (currently scheduled for Summer 2013 [Java8 Release])
based upon SAM interfaces [State of the Lambda]. Currently variables defined outside
the scope of an anonymous inner class must be declared final for them to be accessed
inside. The lambdas in Java8 will not have this requirement, however any attempt
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to access a non-final variable declared outside the scope of a lambda will result in an
exception [Langer]. A class will only be allowed to contain one lambda, should you
require more then you must revert to anonymous inner classes [Langer]. Given that C#
now has a well worked out syntax for lambdas the introduction of lambda to JavaTM is
too little too late.

As an aside, C++ has had lambdas of the following form
#include <iostream>

i n t main ( ){
auto lambda =[]{ std : : cout << ” He l lo Lambda” << std : : endl ; } ;
lambda ( ) ;

}

since the C++ 11 standard was approved by ISO on 12 August 2011 [Sommerlad]. So
we are in the surprising position that C++ has lambdas before JavaTM; justifying the
Haskell slogan ”avoid sucess at all costs”.

3.1.3 Static Typing

Java and Haskell both have strong static typing, that is the compiler can detect type
errors. Haskell does not have a base object type and so objects cannot be coerced to
other types, where Java can, leading to the possibility of type cast exceptions.

3.1.4 Polymorphism and Generics

Generics were introduced into Java5 to enable polymorphic methods. Generic types are
however removed by the compiler (type erasure). Implementations of generic interfaces
still require a non-generic method to be generated by the compiler (bridging methods).
These methods are not available to the programmer, other than by introspection, leading
test coverage tools to marks classes as less than 100% covered. ”Generics are a nasty
business”[Langer].

3.1.5 Type inference

The generics sytem does have a form of type inference, but the original syntax is still in
place leading to the verbose, redundant syntax of

Object o = new Object ( ) ;

In Java7 some type inference has been introduced with the diamond operator [Goetze]
which reduces the redundancy:

pub l i c L i s t<Str ing> l i s t = new ArrayList <>();

3.1.6 Auto-boxing and primitive types

Both Haskell and JavaTM make a distinction between primitive data types such as int,
boolean, double and objects [Haskell Primitives] and place the same restictions on them.
In particular a container (or box) may not contain primitives.
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This distinction is made for pragmatic reasons, objects being considered unnecessarily
heavyweight and a three fold improvement is still available in Haskell for numerically
intensive programs [Haskell Primitives].

The two types of data type in Java is now considered confusing and result in cluttered
boilerplate code when, for example, storing primitive data types in a Collection so auto-
boxing was introduced in Java5 [Auto-Boxing]. This is only a sticking plaster and can
lead to confusion as to what type is actually being dealt with.

3.1.7 Handling bottom ( ⊥ )

The undefined state can be reached in a number of ways, for example infinite loops,
non-reducing recursion, division by zero,

In JavaTM every object can be null this is equvalent to ”adding an implicit Maybe a to
every type a” [StackOverflow 1], which means that every dereference has to check for null
[SpecialCase]. The introduction of null has been called by Tony Hoare, who introduced
null references into ALGOL in 1965, his ”billion dollar mistake” [Hoare 2010].

3.1.8 Exception handling

Java Exception (checked exceptions) and Haskell’s Control.Exception are equivalent.
It is argued that checked exceptions have been overused Java, especially in relation to
IOException, where the programmer can often do nothing to recover the situation. This
is not really the motivation for preferring RuntimeException (unchecked exceptions). It
is that Java forces checked exceptions into the method signature, so forcing the program-
mer to write boilerplate code. This is dangerous, as Java programmers increasingly use
RuntimeException when they should in fact be using an Exception. From a functional
programming perspective it is always preferable for the type to reflect the model and to
allow the programmer to handle failure than to return error (⊥) from an arbitrary point
in the code.

3.1.9 Recursion

JavaTM has both recursive function calls and recursive data type definitions.

3.1.10 Lazy Evaluation

Whilst Lazy Evaluation can be achieved in JavaTM it is painfully verbose (approximately
ten times ”larger” than in a functional language [Dekker 2006]).

3.1.11 List Comprehensions

List comprehensions, originated in the functional language NPL [Darlington 1977] have
since been used in other languages such as Miranda, Haskell, Erlang, Python [Peyton Jones, Wadler 2007].
A list comprehension can be written in Java as an enumeration but there is no syntactic
assistance.

pub l i c c l a s s FromToEnumeration
implements java . u t i l . Enumeration<Integer> {
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p r i v a t e I n t e g e r cur r ent ;
p r i v a t e I n t e g e r to ;

pub l i c FromToEnumeration ( I n t e g e r from , I n t e g e r to ) {
t h i s . cur r ent = from − 1 ;
t h i s . to = to ;

}

pub l i c boolean hasMoreElements ( ) {
r e turn ( cur rent < to ) ? t rue : f a l s e ;

}

pub l i c I n t eg e r nextElement ( ) {
r e turn ++current ;

}
}

3.1.12 Purity

Haskell is a pure functional language. Purity here is used in the same sense as the
PURE keyword in Fortran [Fortran 2010 Draft]. This means that functions may not
have side effects and their value must depend soley upon their arguments, and hence may
be executed in any order. Unfortunately JavaTM does not have a mechanism for ensuring
function purity, though add-ons and subsets have been proposed [Joe-E].

3.1.13 Conclusion

Language design must take into account human use, mathematical properties and ma-
chine execution.

A language must be learnable but the ability to second guess what makes a language
easy or difficult for the novice has proved elusive, as so definitively shown by BASIC.
I would argue that the historical pedagogical order of imperative, object oriented and
finally functional programing languages is exactly wrong.

Another human factor to be taken into account is ease of debugging. Functional
programming features such as stong static typing and purity remove whole classes of
elusive bugs. However a division within the functional programming languages, between
Haskell and ML for example, is the distance from the underlying execution model of the
machine running the program.

The mathematical properties of a language are important if one wishes to prove pro-
grams correct or to generate correct programs.

The current emphasis within computing for interconnected processors, either over a
network or within a multi-cpu machine, requires that functions be pure.

For me functional programming has been the missing piece of the jigsaw and I am
very grateful for the opportunity to have been taught it.
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